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Abstract

Fuzzing is a software testing technique that involves providing invalid, unex-
pected, or random data as inputs to a computer program. This technique is
widely used to identify vulnerabilities in software systems.
The significance of stateful fuzzing lies in its ability to identify vulnerabili-
ties in applications characterized by intricate internal states, which may be
overlooked by conventional fuzzing techniques.
This thesis compare three fuzzers—Fallaway, AFLNet and ChatAFL—by
using them against Lighttpd, a high-performance web server. This research
compares these instruments with regard to code coverage, executions and
crash detection.
These results provide enlightening insights into the strengths and weaknesses
of each fuzzer, hence guiding selection and improvements of stateful fuzzing
approaches for modern software systems. In particular, Fallaway demon-
strated substantial effectiveness by achieving broader coverage and more com-
prehensive exploration, even with its relatively simpler approach, highlight-
ing its suitability for scenarios where a thorough examination of all potential
states is crucial.
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1 Introduction

As the software systems are getting more complex, ensuring their robust-
ness and security has turned out to be a serious challenge. In this scenario,
fuzzing has emerged as a powerful technique in the identification of security
vulnerabilities and defects, which may remain elusive for traditional test-
ing techniques, like static analysis, dynamic analysis and concolic analysis
[1]. Fuzzing involves the generation of random test inputs in order to see
how the software reacts to unexpected or malformed input data, looking for
problems, such as crashes, unexpected behaviour, or security vulnerabilities.
Taking some examples of these technologies, there is SAGE [2], developed
by Microsoft, which introduced fuzzing by using dynamic symbolic execution
to explore different execution paths in software. This approach significantly
contributed to identifying vulnerabilities in Windows by systematically gen-
erating inputs that maximize code coverage.
Another example is ClusterFuzz [3], developed by Google, which is a large-
scale fuzzing infrastructure that automates the testing of software like the
Chrome browser. It has been instrumental in identifying thousands of secu-
rity vulnerabilities by continuously running different fuzzers.
Furthermore, there is American Fuzzy Lop (AFL [4]), which introduced a
new approach named coverage-guided fuzzing. This approach uses feedback
from program execution to guide the mutation of inputs, focusing on maxi-
mizing code coverage rather than generating inputs randomly.
Traditional fuzzers typically focus on generating inputs, in different ways, and
observing the software responses. However, for applications that maintain
internal states across several interactions, such as web servers or networked
applications, this approach can be insufficient [5]. These stateful applica-
tions require more sophisticated fuzzing techniques that take into account
the interaction between different states and transitions.
Stateful fuzzing is an advanced approach for solving the problems of appli-
cations that rely on state models. Whereas in stateless fuzzing, each input
is considered a unique event, stateful fuzzing emulates the flow of activities
along with the succeeding changes in the state of an application. It includes
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the generation of inputs which consider previous interactions and what these
have done to the state of the application, hence providing a more realistic
and deeper testing process.
In this thesis, we tested Lighttpd [6], an open-source web server recognized
for its effectiveness and ability to scale, to manage a substantial number
of concurrent connections. Assessing Lighttpd offers a chance to scrutinize
stateful fuzzing methodologies.
This thesis focuses on the benchmarking of stateful fuzzers to ascertain their
efficiency in coverage in Lighttpd. The reviewed stateful fuzzers are: Fall-
away,AFLNet andChatAFL. Each of them has a its own approach toward
stateful fuzzing.
By analyzing the performance of all these fuzzers, this thesis will report the
various strengths and weaknesses of each, which gives necessary suggestions
for improving stateful fuzzing techniques and enhancing the security of mod-
ern software systems.
The thesis is structured as follows: Chapter 2, provides an overview of the
background about fuzzing, fuzzers used in this thesis and the target. Chap-
ter 3, describes the setup of the environment and the configuration of the
fuzzers. Chapter 4, presents the results obtained from the experiments.
Finally, Chapter 5, summarizes the findings and provides suggestions for
future work.
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2 Background

2.1 Introduction to Fuzzing

Fuzzing, or fuzz testing, is a software testing technique that includes feeding
a huge amount of random data into the system, called SUT (System Under
Test), to find crashes. The primary objective of fuzzing is to identify vulnera-
bilities such as buffer overflows, memory leaks and other security weaknesses
that can be exploited by attackers [7].
The success of fuzzing is based on its capabilities for automatic test case gen-
eration and for focusing its attention on portions of programs that otherwise
would not have been tested by other more traditional testing technique.

2.1.1 Types of Fuzzing Techniques

Fuzzing methodologies vary and there exist a lot for different applications
and purposes [8]:

� Black-box Fuzzing: This is a technique of generating inputs without
prior knowledge of the internal structure of an application. It is easy
to deploy but often less efficient as there is no internal feedback.

� White-box Fuzzing: This is one of those techniques that rely heavily
on source code intuition, such as control flow and data flow, to provide
maximum code coverage with test case generation [9].

� Grey-box Fuzzing: It is a strategy that combines the various mer-
its of black-box and white-box fuzzing. It brings in partial knowledge
about internal application details and code coverage feedback guiding
the generation of inputs. Grey-box fuzzing has become a widespread
technique with the advent of AFL fuzzer (American Fuzzy Lop [4]),
which has proved to be highly effective using coverage-guided fuzzing,
as explained in Section ??
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Another important methodology is Coverage-guided fuzzing (CGF), that
is a subtype of grey-box fuzzing that leverages code coverage information to
drive the generation of test inputs. It aims to explore as many code paths as
possible by continuously generating inputs that maximize the coverage.
For example, the American Fuzzy Lop (AFL [4]) fuzzer is a popular
coverage-guided fuzzer that uses a feedback loop to guide the generation of
new test cases. AFL instruments the binary to track the code coverage dur-
ing execution and uses this information to guide the mutation of test cases.
The fuzzer maintains a queue of test cases and iteratively selects, mutates
and executes them to maximize the code coverage.
In this context is also important to describe the concept of edge coverage,
that is a metric that measures the number of unique edges traversed by the
program during execution. An edge is a transition between two basic blocks
in the control flow graph of the program (a basic block is a sequence of in-
structions not containing any jumps or branches). For example, consider the
following code snippet:

if (x > 0) {
y = 1;

} else {
y = 2;

}

In this case, there are two edges (see Figure 2.1): one from the condition to
the true branch and one from the condition to the false branch. The basic
blocks are the condition, the true branch and the false branch.
This edges are used in the coverage map, where each edge is mapped to a
bit in the coverage map.

Figure 2.1: Example of edge between basic blocks
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When an edge is executed, the corresponding bit in the coverage map is
incremented by +1 (to mark as “hitted”). The fuzzer uses this information
to guide the generation of new test cases that maximize the coverage.
Within this action a coverage-guided fuzzer maintains a collection of inputs
called corpus. In particular it is a collection of:

� Seeds: Initial inputs that are used to start the fuzzing process.

� Interesting inputs: Inputs that are generated by the fuzzer during
the fuzzing process and achieve new coverage (i.e. by mutating the
seeds).

The corpus grows as the fuzzer adds new inputs that has allowed it to increase
the coverage of the program.

2.1.2 Fuzzing Inputs Generation

An orthogonal classification of fuzzing techniques is often related on how the
inputs are generated:

� Mutation-based Fuzzing: This generates new inputs through ran-
dom mutations of existing inputs (for example modifying bits or bytes
of existing test cases). It requires no knowledge about the structure
of the inputs but is often weaker compared with other generations for
applications requiring highly structured inputs [10].

� Generation-based Fuzzing: This builds the inputs from scratch,
based on a formal characterization of the input format, grammar or pro-
tocol specification. It has proved quite effective in applications where
the inputs have to be complex or systematically structured [10].

2.1.3 Key Techniques in Stateful Fuzzing

Stateful fuzzing involves several advanced techniques that distinguish it from
traditional fuzzing approaches [8]:

� State Modeling: The process of building a model representing an
application state machine by reverse engineering source code, observ-
ing real interactions, or guide test case generation in conjunction with
machine learning techniques.
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� Feedback Mechanisms: By tracking the state of the application and
taking feedbacks, one can prioritize those test cases that tend to explore
new states or code paths; hence, the general efficiency of fuzzing can
be improved.

� Sequence Generation: It is the need to generate input sequences to
properly model actual use, since the findings of vulnerabilities often
depend on specific sequences or state transitions.

� ML-based Approaches: Certain fuzzers utilize machine learning or
heuristic methodologies to dynamically ascertain the structural config-
uration of the application’s state machine, thereby enabling the fuzzer
to adjust and enhance its efficacy progressively [11, 12].

2.2 Stateful Fuzzing: Concepts and Chal-

lenges

Stateless fuzzing is a well established fuzzing technique that generates ran-
dom inputs to test the behavior of an application. However, this approach
is not always effective for applications that maintain internal states across
multiple interactions.
For example considering an FTP server like LightFTP [13], until the user is
not authenticated, all the inputs will cover just a little portion of the code. In
this case, the fuzzer should be able to generate a sequence of inputs that first
authenticate the user and then test the behavior of the application. Stateful
fuzzing adds state awareness to traditional fuzzing methods. It considers an
application’s internal state and how that state might affect subsequent in-
puts handling. This becomes particularly critical for applications that handle
complex state information, such as network servers, databases and interactive
applications.

2.2.1 Understanding Stateful Applications

Stateful applications maintain state across multiple interactions or sessions.
Examples include network servers that manage connection states, authen-
tication states, session identifiers, or other state information specific to an
application. These states significantly influence the processing of inputs and
the behavior of the application over time. Good practices in state transition
management are crucial for both security and reliability. Stateful fuzzers
attempt to model and explore these state transitions by generating input
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sequences that mimic valid usage scenarios while concurrently monitoring
state changes to ensure comprehensive coverage of all possible transitions.
To better understand this concept, consider a simple state model shown in
Figure 2.2.

Figure 2.2: A simple state model illustrating state transitions in a stateful ap-
plication

Considering this, from state s0 there is a transition to state s1 only if the
input is a certain input “input1”. On the other hand, from state s1 there is
also a transition to state s0 only if the input is a certain input “input0”. If
any other input is given, the state remains the same.
In this case, the fuzzer should be able to generate a sequence of inputs (in-
put0, input1 and other inputs) that first brings the application from state s0
to state s1 and then tests the behavior of the application in that state (and
vice versa).

2.2.2 Challenges in Stateful Fuzzing

Stateful fuzzing has also some challenges to face [5]:

� Complex State Transitions: Stateful systems often have intricate
state transitions. To perform fuzz testing effectively, the system must
be guided through various states. Using the same input specification
for different states may lead to many packets being discarded if they do
not conform to the expected format, thereby reducing the effectiveness
of the test cases [14].

� Resource Consumption: Protocol messages require significant time
and memory resources for reception, response, and transmission be-
tween the client and server. As the depth of state transitions increases,
the number of auxiliary packets transmitted and memory resources con-
sumed grows exponentially, resulting in a lower number of test packets
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processed per unit of time. This impact on resource usage can signifi-
cantly reduce testing efficiency [14].

� Path Explosion: The number of possible paths through the applica-
tion increases exponentially with the number of states and transitions.
This can lead to a combinatorial explosion of possible paths, making it
difficult to explore all possible states and transitions effectively [15].

2.3 Lighttpd: A Case Study for Stateful

Fuzzing

Lighttpd is an open-source web server optimized for performance with very
low memory usage. It is designed to handle huge volumes of parallel connec-
tions with minimal overhead, making it particularly useful on systems with
limited resources or those requiring a high degree of concurrency. Its modu-
lar design and support for advanced web protocols make it a popular choice
for embedded systems, cloud computing platforms and high-traffic websites.
It was used by popular websites like Wikimedia, YouTube and Git [16, 17].

2.3.1 Overview of Lighttpd Architecture

Lighttpd operates on an event-driven architecture, which enables it to serve
many requests concurrently. An asynchronous I/O framework is employed
to minimize overhead in network connections, allowing the server to scale
efficiently under varying workloads. The key features of Lighttpd include:

� Modular Design: Provides a series of modules for implementing func-
tions like URL rewriting, HTTP compression, SSL/TLS and WebSock-
ets. The modular design allows for customization based on specific
needs.

� Protocol Support: Out of the box, it supports HTTP/1.1, HTTPS,
FastCGI, SCGI and HTTP/2, making it suitable for a wide range of
web applications and services.

� Security Attributes: Advanced integrated security features include
TLS/SSL encryption, prevention of denial-of-service attacks and mul-
tiple authentication options.
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2.3.2 Relevance of Lighttpd for Fuzzing

Lighttpd is an important SUT for fuzzing due to its common use behind var-
ious internet applications. These characteristics make it a suitable candidate
for evaluating fuzzing techniques. By default, Lighttpd maintains transient
states during the processing of requests as shown if Figure 2.3.
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Figure 2.3: State model of Lighttpd

13



The state model seems to be complex, but the states are mainly transitory.
A sample flow of states in Lighttpd is as follows:

1. CON STATE CONNECT: The initial default state before a con-
nection is established.

2. CON STATE REQUEST START: The state right after a connec-
tion is established and wait for request.

3. CON STATE READ: The state when the server is reading the re-
quest (here the server can be in a loop to read the request).

4. CON STATE HANDLE REQUEST: The state when the server is
processing the request, if body length is null.

5. CON STATE READ POST: The state when the server is process-
ing the request, if body length is more than 0.

6. CON STATE WRITE: The state when the server is writing the re-
sponse.

7. CON STATE ERROR: The state when an unhandled error occurs.

8. CON STATE RESPONSE END: The state after the request has
been fully received.

9. CON STATE CLOSE: The state when the connection is closed.

The CON STATE CONNECT is reached just when the connection is estab-
lished.
The CON STATE READ is a loop that reads the request and can be con-
sidered as stationary (i.e. if the request is sent line by line, it will loop into
it).
The other states are transitory because, ultimately, the connection will
go back to CON STATE REQUEST START or CON STATE CONNECT
(this two last states could also be considered as stationary).
For this thesis, it has been chosen to model the state of the server based
on the existence or non-existence of a resources. A resource can be a file, a
directory, or any other entity that can be accessed via HTTP. By considering
two types of state—a state s0, where the resource does not exist and a state
s1 where the resource exists—it can effectively explore different states of the
server.
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2.4 Benchmark Selection: AFLNet,

ChatAFL and Fallaway

For the scope of this thesis, three stateful fuzzers—AFLNet, ChatAFL and
Fallaway—will be benchmarked over Lighttpd.
AFLNet was chosen as the initial CGF (coverage-guided fuzzer) because it
is the first in its category [18], while ChatAFL and Fallaway, being the
most recent stateful fuzzers published this year, have achieved significant
advancements over AFLNet in some case studies.

2.4.1 AFLNet

AFLNet [18] is a stateful CGF fuzzer. It integrates automated state model
inference with coverage-guided fuzzing, creating a synergistic relationship
between the two processes. As fuzzing generates new message sequences to
reach unexplored states, it progressively builds a more complete state model.
Concurrently, this dynamically evolving state model helps guide fuzzing ef-
forts towards more significant areas of the code, leveraging both state and
code coverage information of the retained message sequences.
AFLNet is implemented as an extension of the popular grey-box fuzzer AFL,
with the additional capability of facilitating network communication over
sockets, which is not supported by the original AFL. To achieve this, AFLNet
establishes two communication channels: one for sending messages to the
SUT and another for receiving responses. The response-receiving channel
acts as a state feedback channel, complementing the code coverage feedback
channel utilized by other CGF fuzzers. The communication is implemented
using standard C Socket APIs and synchronization between AFLNet and the
server is ensured by introducing delays between requests.
AFLNet uses a prefix-based fuzzing strategy, where the fuzzer maintains a
prefix of the message sequence that has been successfully processed by the
server. This prefix is used to guide the generation of new message sequences,
ensuring that the fuzzer explores new states and code paths while maintain-
ing the validity of the input.
The seeds to AFLNet consists of pcap files capturing network traffic, such
as interactions between a client and server. A network sniffer, like tcpdump,
is used to capture realistic exchanges and a packet analyzer, such as Wire-
shark, can automatically extract the relevant message sequences. AFLNet
uses a Request Sequence Parser to generate an initial corpus of message
sequences by parsing these pcap files. It isolates individual client requests,
discards the responses and identifies the beginning and end of each message,
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utilizing protocol-specific markers.
The State Machine Learner component then augments the protocol state
machine with newly observed states and transitions by analyzing server re-
sponses. AFLNet extracts status codes from server responses to identify and
document new states and transitions. The Target State Selector lever-
ages this information to determine which state the fuzzer should focus on
next. This is done by applying several heuristics based on the statistical
data gathered from the state machine, aiming to identify “blind spots” or
rarely exercised states and maximize the discovery of new state transitions.
Once a target state is selected, the Sequence Selector chooses a corre-
sponding message sequence from the corpus that can reach the desired state.
AFLNet maintains a state corpus and a hashmap to facilitate efficient selec-
tion of sequences. The selected sequence is then subjected to mutation using
the Sequence Mutator, which builds upon AFL’s ‘fuzz one‘ method, which
overall algorithm can be summarized as follows [19]:

1. Load user-supplied initial test cases into the queue.

2. Take next input file from the queue.

3. Attempt to trim the test case to the smallest size that does not alter
the measured behavior of the program.

4. Repeatedly mutate the file using a balanced and well-researched variety
of traditional fuzzing strategies.

5. If any of the generated mutations resulted in a new state transition
recorded by the instrumentation, add mutated output as a new entry
in the queue.

6. Go to 2.

AFLNet uses protocol-aware mutation operators to modify the candidate
subsequence, enhancing the chances of generating new sequences that can
lead to the discovery of new states or code branches.
AFLNet employs several mutation strategies, such as replacing, inserting, du-
plicating, or deleting messages, in addition to standard byte-level operations
like bit flipping. Generated sequences deemed “interesting” — those that
uncover new states, transitions, or code branches — are added to the corpus
for further fuzzing. This evolutionary approach, driven by the continuous
enhancement of the message sequence corpus, underpins the effectiveness of
AFLNet in achieving comprehensive state and code coverage.
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2.4.2 ChatAFL

Traditional mutation-based protocol fuzzing relies heavily on recorded mes-
sage sequences to generate test cases, which can limit its effectiveness in
thoroughly exploring the input and state space of complex network proto-
cols. Existing approaches often require detailed protocol specifications, which
are labor-intensive to produce and maintain. Furthermore, these approaches
may struggle with limited seed diversity and may reach a coverage plateau
(no more progress in discovering code paths or states), where further explo-
ration yields diminishing returns.
To address these limitations, recent advancements have explored the poten-
tial of Large Language Models (LLMs) [20] to assist in the fuzzing process.
LLMs are a class of neural network models that have demonstrated remark-
able capabilities in natural language understanding and generation. They
can be fine-tuned for specific tasks and have been successfully applied to a
wide range of applications, including language translation, text generation
and code completion.
LLMs are pre-trained on extensive corpora, including publicly available pro-
tocol specifications and have demonstrated impressive capabilities in under-
standing and generating text. This presents an opportunity to leverage LLMs
to improve fuzzing strategies by interpreting natural language descriptions
of protocols and generating structured, diverse message sequences.
LLM-guided protocol fuzzing uses the capabilities of LLMs to overcome the
limitations of traditional mutation-based fuzzers. This method is imple-
mented in ChatAFL [21] , a fuzzer built upon the AFLNet framework.
ChatAFL incorporates LLMs to assist in three key areas:

1. Grammar Extraction: By querying the LLM, the fuzzer can obtain
a machine-readable grammar for the protocol under test. This gram-
mar is used to guide mutations in a way that maintains the structural
validity of the messages, thus enhancing the fuzzer’s ability to explore
new state transitions.

2. Seed Enrichment: The LLM is used to diversify the initial seed cor-
pus by generating new message types that are contextually relevant to
the protocol. This helps to overcome the limitations posed by a narrow
set of initial test cases and increases the likelihood of discovering new
protocol behaviors.

3. Breaking Coverage Plateaus: When the fuzzer is unable to achieve
further state or code coverage, it is considered to be in a coverage
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plateau. The LLM can be prompted to generate new message se-
quences aimed at escaping the plateau by triggering unexplored state
transitions.

The integration of LLMs into protocol fuzzing offers several benefits:

1. It reduces the dependence on pre-existing machine-readable protocol
specifications by leveraging natural language processing capabilities.

2. It enhances the diversity and effectiveness of the fuzzing process by
generating a wider variety of input sequences.

3. It aligns with the inherent goals of fuzzing — automation and adapt-
ability — by using LLMs that can be easily guided via prompts to
perform specific tasks without extensive reprogramming or manual in-
tervention.

Overall, this LLM-guided approach, as demonstrated in ChatAFL, represents
a novel direction in protocol fuzzing, combining traditional techniques with
state-of-the-art language models to improve both the breadth and depth of
fuzzing campaigns.

2.4.3 Fallaway

Fallaway [22] is a stateful fuzzer designed to address several key challenges
faced by traditional fuzzers when handling stateful SUTs. Unlike stateless
fuzzers such as AFL, which send single test cases and expect the SUT to
terminate, Fallaway manages multiple states by incorporating a dual-loop
structure: an outer loop that selects the SUT state and an inner loop that
sends multiple test cases for the chosen state. This approach helps maintain
deliberate focus on specific states, prevents interference between states and
ensures that progress in one state does not hinder progress in another.
To achieve these objectives, Fallaway decouples the concepts of state schedul-
ing and test case scheduling.
State scheduling is based on different strategies like:

� Coverage-Yield (CY) strategy, which uses a round-robin approach
to select the next state.

� Outgoing Edges (OE) strategy, which selects states prioritizing the
outgoing edges of the state model.
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Corpus and queue are often used interchangeably, but they are not really the
same thing.
We can look at the queue as a mapping of the corpus within a scheduling
algorithm to choose the next input to mutate.
About test case and coverage map, they can be state aware or not. Being
state aware means that they are specific to a state, otherwise they are shared
across all states.
Fallaway uses two different strategies to manage the corpus:

� Multiple Corpus Single Map (MCSM): This strategy uses a single
coverage map, shared accross the states, to track the coverage of the
program. It also uses multiple queues, one for each state, to store the
inputs.

� Multiple Corpus Multiple Map (MCMM): This strategy uses
multiple coverage maps, one for each state, to track the coverage of the
program and multiple queues, one for each state, to store the inputs.

When the state scheduler choose a state, that specific queue will contains
“interesting” inputs, that have allowed the fuzzer to achieve more coverage.
For each state, a unique prefix is maintained along with a separate corpus
of test cases, allowing focused exploration of the SUT’s behavior within that
state. Observations and feedback are also stored separately for each state,
avoiding the problem of feedback contamination across different states. This
strategy enables the fuzzer to maintain a clear distinction between the in-
formation gathered in each state, ensuring that the testing process remains
unbiased and effective.
Fallaway is built on top of LibAFL [23], which is a modular library for
developing fuzzers. To make LibAFL suitable for stateful SUTs, Fallaway
extends its functionality in two key ways:

1. It uses AFL’s persistent mode, designed to keep a SUT application
running continuously between different test cases, rather than starting
a new process for each test case. This approach is particularly useful for
maintaining and manipulating the application’s state across test cases,
allowing the SUT to handle inputs continuously without resetting after
each test case, which is crucial for efficient fuzzing of stateful systems.

2. It introduces an outer loop to handle state transitions and reset the
SUT accordingly, ensuring compatibility with LibAFL’s existing mech-
anisms for executing test cases.
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By integrating these methods, Fallaway leverages the speed and efficiency
of persistent mode fuzzing while maintaining precise control over state tran-
sitions. This approach allows it balance execution speed and focus state
exploration.
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3 Setup and fuzzing

3.1 Fallaway

Fallaway use the persistent mode. This mode allows the fuzzer to main-
tain the server’s state across multiple requests, which is especially useful in
scenarios where the server does not reset its state between requests, such as
when managing user sessions or maintaining authentication states in a web
application.
The persistent mode is implemented by modifying the Lighttpd server to
maintain its state between requests. The server operates in a separate pro-
cess and the fuzzer interacts with it via a socket. The fuzzer sends requests to
the server and receives responses, using the results to guide the generation
of subsequent requests. This process continues in a loop until the fuzzing
session is complete.
To enable this, it is necessary to modify the Lighttpd code to ensure that
the server continuously receives, processes and responds to requests without
shutting down. The changes are made to the function server main loop in
the src/server.c file and to the connection handling functions in src/connec-
tions.c of the Lighttpd source code. The specific code changes are shown in
the next section, providing a comparison between the original and modified
code.

3.1.1 Lighttpd Code Modifications for Persistent
Mode

Table 3.1 presents a comparison of the original and modified code for the
connections.c file. The modifications to this file are crucial for maintaining
an open connection state, ensuring that the fuzzer can interact continuously
with the server. It is also important to clean all buffers and old data for that
connection.
Table 3.2 shows a comparison of the original and modified code for the
server.c file. The changes made here are essential for enabling persistent
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server operation, allowing the fuzzer to manage and maintain server state
across multiple requests, looping into the AFL LOOP.

Original Code

static void connection handle shutdown(connection *con) {
...
connection reset(con);

/* close the connection */
if (con=>fd >= 0

&& (con=>is ssl sock
|| 0 == shutdown(con=>fd, SHUT WR))) {
con=>close timeout ts = log monotonic secs;

request st * const r = &con=>request;
connection set state (r , CON STATE CLOSE);
if (r=>conf.log state handling) {

log error (r=>conf.errh, FILE , LINE ,
”shutdown for fd %d”, con=>fd);

}
} else {

connection close(con);
}

}

Modified Code

static void connection handle shutdown(connection *con) {
...
connection reset(con);

/* keep the connection open and reset it */
request reset ex (&con=>request);
chunkqueue reset(con=>read queue);
con=>request count = 0;
con=>is ssl sock = 0;
con=>revents err = 0;
connection set state (&con=>request,CON STATE REQUEST START);

}

Table 3.1: Comparison of Original and Modified Code for ‘src/connections.c‘
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Original Code

static void server main loop (server * const srv) {
...
server load check(srv) ;

#ifndef MSC VER
static
#endif
connection * const joblist = log con jqueue;
log con jqueue = sentinel ;
server run con queue( joblist , sentinel ) ;

if ( fdevent poll (srv=>ev, log con jqueue != sentinel ? 0 : 1000) > 0)
last active ts = log monotonic secs;

}

Modified Code

static void server main loop (server * const srv) {
...
server load check(srv) ;

while ( AFL LOOP(INT64 MAX)) {
fdevent poll (srv=>ev, =1);

#ifndef MSC VER
static
#endif
connection * const joblist = log con jqueue;
log con jqueue = sentinel ;
server run con queue( joblist , sentinel ) ;

}

srv shutdown = 1;
}

Table 3.2: Comparison of Original and Modified Code for ‘src/server.c‘

3.1.2 Setting Up the Fuzzing Environment

To run the fuzzer, it is important to build a Docker container that includes all
the necessary dependencies and the modified Lighttpd server. The Dockerfile
below is based on an image that already contains Fallaway and shows the
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steps to set up this environment.

FROM fallaway

WORKDIR /

# Copy the patch file
COPY ./lighttpd.patch /lighttpd.patch

ENV DEBIAN_FRONTEND=noninteractive

# Install lighttpd dependencies
RUN apt-get install -y \

autoconf \
automake \
libtool \
m4 \
pkg-config \
libpcre2-dev \
zlib1g-dev \
zlib1g \
openssl \
libssl-dev \
scons

# Create the root directory for the server
RUN chmod 777 /tmp

# Install

# Set up environment variables for ASAN
ENV ASAN_OPTIONS=’abort_on_error=1:symbolize=0:detect_leaks=0:

detect_stack_use_after_return=1:detect_container_overflow=0:
poison_array_cookie=0:malloc_fill_byte=0:max_malloc_fill_size
=16777216’

# Download lighttpd
ENV CC=afl-cc
ENV CXX=afl-cc
RUN git clone https://git.lighttpd.net/lighttpd/lighttpd1.4.git

lighttpd
WORKDIR /lighttpd
RUN git checkout 9f38b63cae3e2
RUN git apply /lighttpd.patch
RUN ./autogen.sh
RUN scons CC=/AFLplusplus/afl-cc CXX=/AFLplusplus/afl-cc -j 4

build_static=1 build_dynamic=0
RUN mv /lighttpd/sconsbuild/static/build/lighttpd /lighttpd/

lighttpd
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# Copy the corpus
COPY ./corpus /corpus

# Copy the config file
COPY ./lighttpd.conf /lighttpd.conf

# Copy the run script
COPY ./run.sh /Fallaway/run.sh
# Make it executable
RUN chmod +x /Fallaway/run.sh

WORKDIR /Fallaway

The Docker container is configured with all the dependencies to run the
fuzzer and build the modified Lighttpd server, providing a controlled
environment to conduct the fuzzing experiment. Another important file to
consider is the configuration file of the Lighttpd server, which is shown below.

server.document-root = "/tmp"
server.bind = "0.0.0.0"
server.port = 8080
mimetype.assign = (".txt" => "text/plain", ".html" => "text/
html" )

server.max-worker = 1
server.max-connections = 1000

Figure 3.1: Lighttpd configuration file

This configuration file specifies the server’s document root, bind address,
port, and maximum number of workers and connections. By defining these
parameters the server will operates correctly and can handle the incoming
requests from the fuzzer.
In particular, it is forced to have just one worker to avoid problems with
fuzzing, because Fallaway is not designed to work with multi-process SUT.

3.1.3 Mutator and Corpus

Another crucial aspect of the fuzzing process involves the corpus and the
mutator. In this experiment, it has been defined the state of the server
based on the existence 3.2 or non-existence 3.3 of a resource. Specifically
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considering two types of requests: one that attempts to access a resource
that exists and another that attempts to access a resource that does not exist.

The corpus folder consists of: a set of folders, one for each state,
each containing a set of files, the prefixes, that are a sequence of messages
to reach that state.
In this case, the corpus is composed by two folders: one for the existent
resource and one for the non-existent resource. Each folder contains a single
file with a request to reach the state. Here we have two requests for the two
states:

PUT /hello.txt HTTP/1.1
Host: 127.0.0.1:8080
Content-type: text/plain
Content-length: 13

Hello, World!

Figure 3.2: Existent resource request

DELETE /hello.txt HTTP/1.1
Host: 127.0.0.1:8080
User-Agent: curl/8.0.1
Accept: */*

Figure 3.3: Non-existent resource request

The mutator, responsible for generating variations of the requests, is rel-
atively straightforward. Its primary function is to modify the existing re-
quests by appending the sequence of characters “\r\n\r\n” to the end of
each request. This modification is essential as it ensures that the requests
are well-formed and adhere to HTTP protocol standards.
Before this, the mutator adds a set of tokens (taken from files in the corpus
folder, but outside of the state folder) and places them in random positions
within the request.
By ensuring the requests are properly formatted, the mutator enables the
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server to parse and process them correctly, which is vital for accurate fuzz
testing.
An example of the corpus folder is as follows:

corpus
|-- existent_resource
| |-- 0_put
| |-- metadata
|-- non_existent_resource
| |-- 0_delete
| |-- metadata
|-- GET
|-- DELETE
|-- PUT
|-- OPTIONS
|-- POST

Figure 3.4: Corpus folder structure

Summing up: existent resource folder is a state, 0 put is a prefix to reach
that state and, in this case is the full request to reach it. The same for
non existent resource and 0 delete. The metadata files contains the number
of outgoing edges for that state. In this case, the number of outgoing edges
is 2 for both states, because we can have:

� existent resource state: when sending the put request, the server can
return a 404 error, if the resource exists, or can return a 200 OK.

� non existent resource state: when sending the delete request, the server
can return a 404 error, if the resource does not exist, or can return a
200 OK.

Finally the other files rapresent the tokens that the mutator will use to
generate new requests.

3.1.4 Fuzzing Execution

To run the fuzzer for 24 hours, it is necessary to run the following script:
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#!/bin/bash
bin="${1:-mcsm-cy}"
loops="${2:-1000}"

timeout 24h cargo run --release --bin fallaway-http-$bin --
--in-dir /corpus --out-dir /output_lighttpd --target-port
8080 --loops $loops -t 300 /lighttpd/lighttpd -D -f /lighttpd
.conf

Figure 3.5: Execution script

In particular there are:

� timeout 24h: a timeout of 24h for the next command.

� cargo run: the command to run the fuzzer.

� –release: the flag to run the fuzzer in release mode.

� –bin fallaway-http-$bin: the state scheduler strategy (by default is
mcsm-cy).

� –: the flag to separate the fuzzer arguments from the binary arguments.

� –in-dir /corpus: the input directory for the fuzzer.

� –out-dir /output lighttpd: the output directory for the fuzzer,
where the results will be stored.

� –target-port 8080: the port of the server.

� –loops $loops: the number execution the fuzzer will do before chang-
ing state (the AFL LOOP is bigger volountarly, so that we prioritize
this argument).

� -t 300: the timeout for each test case, in milliseconds, which will trigger
if the fuzzer does not reach the end of the AFL LOOP in time.

� /lighttpd/lighttpd -D -f /lighttpd.conf : the command to run the
server, in detached mode, with the configuration file.

The results of the fuzzing process will be discussed in the Chapter 4.
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3.2 AFLNet and ChatAFL

3.2.1 Setting Up the Fuzzing Environment

Both AFLNet and ChatAFL are built and configured using ProFuzzBench
[24], a benchmark suite specifically designed for evaluating network protocol
fuzzers. ProFuzzBench provides a standardized environment and set of
targets to ensure a fair comparison among different fuzzers.
By using ProFuzzBench, AFLNet and ChatAFL benefit from a streamlined
setup process that automates the installation of dependencies and configu-
ration of the environment, thus reducing setup overhead. This setup also
involves additional dependencies, such as specific Python packages, which
are necessary for supporting ChatAFL’s unique capabilities like leveraging
language models internally.
The Docker setup derived from ProFuzzBench provides the same base
environment for both AFLNet and ChatAFL, ensuring compatibility and
consistency across experiments. By using this common benchmark suite,
researchers can directly compare results, further validating the effectiveness
and performance differences between the fuzzers. Another important thing to
consider is the configuration file of the Lighttpd server, which is shown below.

server.document-root = "/tmp"
server.bind = "127.0.0.1"
server.port = 8080
mimetype.assign = (".txt" => "text/plain", ".html" => "

text/html" )

Figure 3.6: Lighttpd configuration file

3.2.2 Mutator and Corpus

AFLNet and ChatAFL use a corpus of test cases to seed the fuzzing process.
However, their approach to handling and mutating this corpus differs slightly:

� AFLNet: Focuses on network protocol fuzzing by analyzing and
mutating protocol-specific fields in input messages. The corpus for
AFLNet includes various protocol messages (e.g., HTTP requests) that
are tailored to network targets. AFLNet leverages coverage feedback
as well as response error codes from the server to refine its mutations
and generate new test cases.
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� ChatAFL: Enhances the mutation process using a language model
(LLM) to generate intelligent mutations. This approach allows it to
craft inputs that are more likely to uncover new code paths or trigger
complex behaviors. The LLM is used to predict and prioritize inputs
based on semantic understanding of the protocol or application under
test.

Here are some examples of the corpus used by AFLNet and ChatAFL:

GET /hello.txt HTTP/1.1
Host: 127.0.0.1:8080
User-Agent: curl/8.0.1
Accept: */*

Figure 3.7: Seed used by AFLNet and ChatAFL

OPTIONS /hello.txt HTTP/1.1
Host: 127.0.0.1:8080
User-Agent: curl/8.0.1
Accept: */*

Figure 3.8: Seed used by AFLNet and ChatAFL

DELETE /hello.txt HTTP/1.1
Host: 127.0.0.1:8080
User-Agent: curl/8.0.1
Accept: */*

Figure 3.9: Seed used by AFLNet and ChatAFL

AFLNet and ChatAFL also use a dictionary during fuzzing, shown in Figure
3.10. This dictionary is used to generate meaningful and diverse input cases,
ensuring that the fuzzer explores a wide range of scenarios and protocols.
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By leveraging such a dictionary, these fuzzers enhance their ability to cover
different code paths.

"GET"
"PUT"
"POST"
"OPTIONS"
"127.0.0.1"
"DELETE"
"CONNECT"
"TRACE"
"HEAD"
"hello.txt"
"User-Agent"
"StarWars3.wav"

Figure 3.10: Dictionary used by AFLNet and ChatAFL
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3.2.3 Fuzzing Execution

#!/bin/bash

PFBENCH="$PWD/benchmark"
cd $PFBENCH

PATH=$PATH:$PFBENCH/scripts/execution:$PFBENCH/scripts/
analysis

NUM_CONTAINERS=$1
TIMEOUT=$(( ${2:-1440} * 60))
SKIPCOUNT="${SKIPCOUNT:-1}"
TEST_TIMEOUT="${TEST_TIMEOUT:-5000}"

export TARGET_LIST=$3
export FUZZER_LIST=$4

if [[ "x$NUM_CONTAINERS" == "x" ]] || [[ "x$TIMEOUT" == "
x" ]] || [[ "x$TARGET_LIST" == "x" ]] || [[ "x$FUZZER_LIST"
== "x" ]]

then
echo "Usage: $0 NUM_CONTAINERS TIMEOUT TARGET FUZZER"
exit 1

fi

PFBENCH=$PFBENCH PATH=$PATH NUM_CONTAINERS=
$NUM_CONTAINERS TIMEOUT=$TIMEOUT SKIPCOUNT=$SKIPCOUNT
TEST_TIMEOUT=$TEST_TIMEOUT scripts/execution/
profuzzbench_exec_all.sh ${TARGET_LIST} ${FUZZER_LIST}

Figure 3.11: Execution script

This is the script defined by ChatAFL repository [25], that internally uses
ProFuzzBench’s scripts to run the fuzzers [26].
An example of execution line is like this:

./run.sh <container_number> <fuzzed_time> <subjects> <fuzzers>

The script takes four arguments:

� CONTAINER NUMBER: the number of containers to use for the exe-
cution of the fuzzer.
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� FUZZED TIME : the time in minutes after which the execution of the
fuzzer will be stopped.

� SUBJECTS : a list of targets to fuzz.

� FUZZERS : a list of fuzzers to use.

The command to fuzz Lighttpd for 24h using both AFLNet and ChatAFL
is:

./run.sh 1 1440 lighttpd aflnet,chatafl

Results from both AFLNet and ChatAFL will be discussed in detail in Chap-
ter 4.

3.3 Configuration Differences

AFLNet and ChatAFL provide alternative approaches to fuzzing that share
certain characteristics with Fallaway, but also have distinct differences in
their setup, configuration, and operational strategies. The purpose of this
section is to outline the similarities and unique features of the fuzzers, in-
cluding how they handle server responses and their internal mechanisms for
optimizing fuzzing performance.

3.3.1 Environment

The setup process for AFLNet and ChatAFL is quite similar to that of Fall-
away, given that all three fuzzers share a common Docker-based environment
with the necessary dependencies.
However, AFLNet and ChatAFL are built on top of ProFuzzBench, which
provides a standardized environment for network protocol fuzzing.

3.3.2 Feedback Mechanism

As seen in Figure 3.1 and Figure 3.6, AFLNet and ChatAFL do not need
to force the number of workers to 1, because they do not share the same
problem as Fallaway, due to their managment of the SUT.
In particular, below are some key differences in how AFLNet, ChatAFL, and
Fallaway guide the fuzzing process:

� AFLNet and ChatAFL: Both fuzzers incorporate error code anal-
ysis in their feedback loop. They monitor the response codes (such
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as HTTP 404, 500, etc.) returned by the server to understand which
inputs trigger errors or unexpected states. This allows them to focus
on generating inputs that might exploit these observed errors, thereby
uncovering potential vulnerabilities.

� Fallaway: In contrast, Fallaway exclusively relies on coverage metrics
to guide the fuzzing process. It focuses on maximizing the code paths
exercised by the generated inputs without directly considering the re-
sponse codes from the server. This approach enables it to explore new
paths more thoroughly, but may overlook specific error states that are
of interest for security testing.

Indeed, Fallaway distinguishes itself from other fuzzers like AFLNet or
ChatAFL by using the persistent mode.
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4 Results

The Docker containers, running on an HP ProLiant DL380p Gen8 server
with 32 cores at 2.70 GHz and 175.97 GB of RAM, were configured to
execute AFLNet, ChatAFL, and various Fallaway configurations for 24 hours,
sharing the same resources.
After 24h of fuzzing, we can look at the results and analyze them, but before
this, another step has been done to obtain the coverage of AFLNet and
ChatAFL. By default, the output of AFLNet and ChatAFL is a gcov file,
giving line and branch coverage.
Using the replayer (a component designed to replay test cases or inputs,
generating a coverage report), we have replicated the queue of AFLNet and
ChatAFL and replayed it to calculate the complete coverage.
In Table 4.1 we can see the comparison of the coverage and total executions
for Fallaway, AFLNet, and ChatAFL.
Fallaway has been run with different loop configuration (this is explicited by
the number after “Fallaway” in the table). The strategy used is the mcsm-oe
(Multiple Corpus Single Map - Outgoing Edges), because it has shown to be
better than the other strategies [22].
There are also other two columns, “> AFLNet” and “> ChatAFL”, that
show the time in which the fuzzer overcame the coverage of that column’s
fuzzer.
In bold we are highlighting:

� The highest and lowest coverage.

� The highest and lowest time to overcome AFLNet.

� The highest and lowest time to overcome ChatAFL.

� The highest and lowest number of total executions.
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4.1 Fuzzer Analysis

Fuzzer Complete Coverage > AFLNet > ChatAFL Total Executions *
Fallaway 2000 5.96% (905/15168) 2h 56m 24s 6h 25m 48s 120,726,564
Fallaway 1000 5.82% (883/15168) 3h 22m 48s 3h 35m 24s 79,987,763
Fallaway 500 5.88% (893/15168) 0h 45m 23s 1h 48m 0s 81,231,325
Fallaway 250 5.87% (891/15168) 0h 51m 16s 2h 9m 0s 96,929,952
Fallaway 100 5.91% (896/15168) 4h 17m 24s 4h 43m 48s 59,916,978
Fallaway 10 4.89% (741/15168) Nan Nan 18,892,551
AFLNet 5.47% (830/15168) Nan Nan 209,776
ChatAFL 5.60% (850/15168) 9h 16m 48s Nan 241,242

Table 4.1: Comparison of Coverage and Total Executions for Fallaway, AFLNet,
and ChatAFL (Fallaway has been run with different loop values).
* Take a look at Section 4.2.1 for a deep understanding of this value.

4.2 Coverage Analysis Over Time and Con-

figurations

In the next figures, we can see the coverage of the three fuzzers over time.
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Figure 4.1: Coverage of the three fuzzers in 24h with Fallaway in a loop of 2000
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Figure 4.2: Coverage of the three fuzzers in 24h with Fallaway in a loop of 1000
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Figure 4.3: Coverage of the three fuzzers in 24h with Fallaway in a loop of 500
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Figure 4.4: Coverage of the three fuzzers in 24h with Fallaway in a loop of 250
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Figure 4.5: Coverage of the three fuzzers in 24h with Fallaway in a loop of 100
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Figure 4.6: Coverage of the three fuzzers in 24h with Fallaway in a loop of 10
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Figure 4.7: Coverage of Fallaway’s differents configurations in 24h

As shown in Figure 4.1, Fallaway with a loop count of 2000 achieves the high-
est coverage. This is likely because the fuzzer can execute more test cases
before transitioning between states. The other configurations of Fallaway,
except for the one with 10 loops, share a lower coverage than the 2000 loops’
case, having an average coverage of 5.87%.
Although the loop counts differ, the coverage does not change significantly.
This may be due to the implemented state model, which only considers two
states: the existence or non-existence of a resource. As a result, even if the
number of loops — and thus the number of possible test cases before chang-
ing states — varies, the coverage remains relatively stable. This limitation
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could be addressed by defining a more refined state model that includes ad-
ditional states.
Figure 4.6 shows the lowest coverage at 4.89%. In this scenario, the low
loop count suggests a minimal number of possible test cases before switching
states, which reduces the likelihood of extensive exploration.
In general, higher loop values can lead to greater coverage by exploring more
states, but they may also cause deadlock states where progress is limited.
Conversely, lower loop values can help overcome deadlock states more quickly,
but they might not explore certain states in depth.
Fallaway does not always exhibit linear growth in coverage; instead, it shows
a more random behavior, even though its approach yields the best results ob-
served. In contrast, AFLNet and ChatAFL demonstrate more linear growth
in coverage, which indicates greater efficiency in code exploration. They start
with higher initial coverage than Fallaway, suggesting they are better at tar-
geting diverse code paths.
The linearity is shown using the Pearson correlation coefficient in Table 4.2.
Pearson correlation coefficient measures the strength and direction of a lin-
ear relationship between two variables (in this case, time and coverage). The
closer the coefficient is to 1, the stronger the linear relationship is. In this
case, the coefficient for AFLNet and ChatAFL is 0.67, indicating a good lin-
ear relationship between time and coverage.
Fallaway’s coefficient varies, depending on the loop count, with the highest
value of 0.71 for 100 loops and the lowest value of 0.47 for 500 loops. This
suggests that Fallaway with 100 loops has the most linear relationship be-
tween time and coverage, instead of the 500 loops configuration, which has
the lowest linear relationship.
Regarding coverage, AFLNet achieves a coverage of 5.47% with significantly
fewer executions compared to the closest coverage for Fallaway’s configura-
tions (1000 loop, see Table 4.1).
ChatAFL reaches 5.60% coverage with a number of executions similar to
AFLNet. As ChatAFL is based on AFLNet, it effectively surpasses the
coverage plateau observed with AFLNet. In particular, as shown in Fig-
ure 4.6, which minimizes the interference from Fallaway, ChatAFL surpasses
AFLNet’s coverage plateau most of the time. Additionally, within the 1-day
timeframe, it exhibits a slight increase in coverage, indicating that it was
able to exceed its own previous plateau.
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Fuzzer Pearson Correlation Coefficient
Fallaway 2000 0.67
Fallaway 1000 0.64
Fallaway 500 0.47
Fallaway 250 0.53
Fallaway 100 0.71
Fallaway 10 0.54
AFLNet 0.67
ChatAFL 0.67

Table 4.2: Pearson Correlation Coefficient for the three fuzzers

4.2.1 Fallaway

Strengths:

� Higher Execution Count : Fallaway has a significantly higher number
of total executions compared to AFLNet and ChatAFL, indicating its
capability to generate and execute a large number of test cases. This
increases the likelihood of discovering bugs or vulnerabilities through
extensive input space exploration. An important distinction is that
Fallaway treats each execution as a single input, whereas AFLNet and
ChatAFL treat executions as full traces—sequences of inputs, typically
5 or 6, sent before restarting the SUT’s process. Therefore, the adjusted
number of executions for a fair comparison with Fallaway is 1,258,656
for AFLNet and 1,447,452 for ChatAFL. Even with this adjustment,
Fallaway still has a higher number of executions.

� Higher Code Coverage: Achieves the highest code coverage among the
three fuzzers (5.96%), suggesting its strategy, even if may lacks of so-
phistication in targeting specific code paths relies on brute force to
uncover edge cases, is effective at exploring various parts of the code.

Weaknesses:

� Efficiency Concerns : The large number of total executions (nearly 120
million in the best case) suggests that Fallaway may be less efficient,
requiring more attempts to cover similar amounts of code compared to
AFLNet and ChatAFL.
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4.2.2 AFLNet

Strengths:

� Efficient Execution: With the lowest number of total executions
(around 210,000), AFLNet is highly efficient in achieving its results.
This suggests AFLNet is effective in targeting specific code parts with
minimal test cases, leveraging coverage-guided strategies.

Weaknesses:

� Lower Code Coverage: AFLNet achieves slightly lower coverage
(5.47%) compared to Fallaway and ChatAFL, indicating it might not
explore as many diverse code paths outside of network protocol con-
texts.

4.2.3 ChatAFL

Strengths:

� Balanced Approach: ChatAFL exhibits a balance between execution
count and coverage. With a small number of executions (around
241,000) and a good code coverage (5.60%), it balances efficiency and
effectiveness.

Weaknesses:

� Potential Limitations in General Fuzzing Tasks : While optimized for
certain scenarios, its overall effectiveness may vary depending on the
specific use case and target application. Even though it performs many
more state changes [21], it does not achieve a significant increase in
coverage in this case study.
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5 Conclusion

This thesis explored the effectiveness of three stateful fuzzers—Fallaway,
AFLNet, and ChatAFL—when applied to the Lighttpd web server. The
study aimed to evaluate each tool, focusing on aspects like coverage,
efficiency, and adaptability.

The importance of stateful fuzzing has been discussed, particularly for
applications where internal states and state transitions significantly impact
behavior, such as web servers and network-based applications. Stateful
fuzzing techniques were shown to be crucial in effectively testing these SUTs,
as they consider the influence of previous interactions on the application’s
current state.

The research also involved comparing the setup processes for each
fuzzer. Each tool required a different configuration and environment setup
to achieve optimal performance. For instance, Fallaway’s modifications
to Lighttpd required a persistent mode to maintain server states across
multiple requests. ChatAFL leverages large language models (LLMs) for
generating inputs, while AFLNet utilizes a network-aware approach to
enhance its fuzzing capabilities.

Additionally, various graphs were presented to illustrate the compara-
tive results of the fuzzers. These showed differences in execution counts,
code coverage achieved over time, and other performance metrics, pro-
viding a clearer understanding of how each tool behaves in different scenarios.

Fallaway was observed to extensively explore possible program be-
haviors, achieving broad coverage by conducting numerous test executions.
Its method is advantageous in scenarios where a comprehensive examination
of all potential states is crucial.

On the other hand, AFLNet leveraged its specialization in network
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protocols to achieve meaningful results with fewer test cases. It effectively
targeted specific parts of the code, making it suitable for applications that
require testing of network-related functionalities. However, its narrower
focus might limit its applicability to broader testing needs.

ChatAFL employs an innovative approach by utilizing advanced techniques
to enhance input generation. By leveraging large language models (LLMs)
to generate inputs and effectively overcoming coverage plateaus, it offers
a strong solution for fuzzing. However, it remains somewhat less effective
compared to Fallaway.

The findings show that Fallaway has achieved more results, despite its
relatively simpler approach. The persistent mode significantly contributes
to its effectiveness and the knowledge of the state model in Lighttpd, even if
it is somewhat limited due to the absence of real proper well-defined states,
still enables Fallaway to produce better results.

5.1 Future Works

Future work could explore combining the efficiency of persistent mode with
approaches based on large language models (LLMs).
Another potential area of investigation is fuzzing Lighttpd in a multiprocess
setting, without limiting the number of worker processes to one. This would
require developing or employing fork-aware fuzzing techniques [27, 28], which
is left as future research.
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